The First Eigenvalue of the Dirac Operator on Quaternionic Kähler Manifolds
نویسندگان
چکیده
منابع مشابه
A universal lower bound for the first eigenvalue of the Dirac operator on quaternionic Kähler manifolds
A universal lower bound for the first positive eigenvalue of the Dirac operator on a compact quaternionic Kähler manifold M of positive scalar curvature is calculated. It is shown that it is equal to the first positive eigenvalue on the quaternionic projective space. For this, the horizontal tangent bundle on the canonical SO(3)-bundle over M is equipped with a hyperkählerian structure and the ...
متن کاملThe First Dirac Eigenvalue on Manifolds with Positive Scalar Curvature
We show that on every compact spin manifold admitting a Riemannian metric of positive scalar curvature Friedrich’s eigenvalue estimate for the Dirac operator can be made sharp up to an arbitrarily small given error by choosing the metric suitably.
متن کاملExtrinsic Eigenvalue Estimates of the Dirac Operator
For a compact spin manifold M isometrically embedded into Euclidean space, we derive the extrinsic estimates from above and below for eigenvalues of the Dirac operators, which depend on the second fundamental form of the embedding. We also show the bounds of the ratio of the eigenvalues.
متن کاملThe First Eigenvalue of the Dirac Operator on Compact Spin Symmetric Spaces
We give a formula for the first eigenvalue of the Dirac operator acting on spinor fields of a spin compact irreducible symmetric space G/K.
متن کاملUpper Bounds for the First Eigenvalue of the Dirac Operator on Surfaces. *
In this paper we will prove new extrinsic upper bounds for the eigenvalues of the Dirac operator on an isometrically immersed surface M2 →֒ R3 as well as intrinsic bounds for 2-dimensional compact manifolds of genus zero and genus one. Moreover, we compare the different estimates of the eigenvalue of the Dirac operator for special families of metrics. Subj. Class.: Differential geometry. 1991 MS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 1998
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s002200050504